

# C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Chemistry)

Semester: II

Subject Code: CHM204-1C

Subject Name: Organic and Analytical Chemistry II

|                                 |       |               |                           | Teaching<br>hours/<br>Week |       |       |            | Evaluation Scheme/ Semester |                                                                  |                    |                  |         |      |         |      |         |     |
|---------------------------------|-------|---------------|---------------------------|----------------------------|-------|-------|------------|-----------------------------|------------------------------------------------------------------|--------------------|------------------|---------|------|---------|------|---------|-----|
| Sr Categor Subject Subject Name |       |               |                           |                            | Credi | Credi |            |                             | Tutorial / Practical                                             |                    |                  |         |      |         |      |         |     |
| No                              | v     | t Code        |                           | T                          | Tu    | Pr    | t<br>hours | t<br>Points                 | Continuous and Comprehensive Evaluation End Semester Exams Asses |                    | ernal<br>essment |         |      | Total   |      |         |     |
|                                 |       |               |                           | 111                        |       |       |            | -                           | Ma Marks                                                         |                    | Mar              | Duratio | Mark | Duratio | Mark | Duratio |     |
|                                 |       |               |                           |                            |       |       |            |                             | rks                                                              |                    | ks               | n       | S    | n       | S    | n       |     |
| 2                               | MAJOR | CHM2<br>04-1C | Organic and<br>Analytical | 3                          | -     | 2     | 5          | 4                           | 10<br>10                                                         | Assignment<br>Quiz | 50               | 2       | 25   | 1       | 1    | -       | 100 |
|                                 |       | 04-1C         | Chemistry II              |                            |       |       |            |                             | 05                                                               | Attendance         |                  |         |      |         |      |         |     |

#### **AIM**

- Aware students of the fundamentals of organic chemistry.
- Acquaint the basic concepts and techniques of water analysis
- Teach concepts related to alkanes, alkenes, and alkynes
- Learn laboratory skills for volumetric analysis

#### **COURSE CONTENTS**

## **Course Outline for Theory**

| UNIT | COURSE CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEACHING<br>HOURS |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| I    | Fundamental Aspects in Organic Chemistry Hybridization, sigma and pi-bonds, hydrogen bond, inductive effect, resonance effect, hyper-conjugation, steric effect, acids and bases, structure and stability of carbocation, carbanions, and free radicals, aromaticity: Benzenoids and Huckel's rule.  Electrophilic aromatic substitution                                                                                                                                                                                                                                                    |                   |  |  |  |
|      | Introduction, effect of substituent group, classification of substituent group, electrophilic substitution reactions like Nitration, Sulphonation, Friedal-crafts alkylation and acylation.                                                                                                                                                                                                                                                                                                                                                                                                 |                   |  |  |  |
| II   | Alkane: Nomenclature, Classification, Preparations (with reference to Wurtz, Colbe, and Corey house reaction), Physical and Chemical properties  Alkenes: Nomenclature, Classification, Preparations (with reference to E1 and E2 reactions including kinetics and orders), Physical and Chemical properties  Alkyl Halide: Nomenclature, Classification, Preparations and Chemical Properties, SN1 and SN2 reactions - kinetics, order of reactivity of alkyl halide stereochemistry and rearrangement of carbocations. SN1 versus SN2 reactions, Factors affecting SN1 and SN2 reactions. | 15                |  |  |  |
| III  | Water Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                |  |  |  |

Analysis of hardness of the water in terms of Total solid and volatile solid, Non-filterable solid and non-filterable volatile solid, Filterable solid, Total solid, Total Suspended Solid, Acidity, Basicity or Alkalinity Turbidity. Various methods for determining the hardness of water

## **Basic Principles of Qualitative Analysis**

Introduction, Factors affecting qualitative analysis: common ion effect, solubility product (k<sub>sp</sub>), Use of NH<sub>4</sub>Cl and NH<sub>4</sub>OH in Qualitative analysis, Use of HCl and H<sub>2</sub>S in Qualitative analysis, Numerical on common ion effect and ksp

# **Course Outline for Practical**

| SR. NO | COURSE CONTENT                                                                                                                                               |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|        | Volumetric Analysis                                                                                                                                          |  |  |  |  |  |  |  |
|        | 1. To prepare a solution of acids and bases with a definite concentration                                                                                    |  |  |  |  |  |  |  |
|        | 2. To prepare a solution by dissolving 'x' g NaHCO <sub>3</sub> /Na <sub>2</sub> CO <sub>3</sub> in 100 ml solution                                          |  |  |  |  |  |  |  |
|        | and determine its concentration in terms of normality and molarity using the                                                                                 |  |  |  |  |  |  |  |
|        | given 0.1 M HCl solution                                                                                                                                     |  |  |  |  |  |  |  |
|        | 3. To determine the normality, molarity, and g/litre of NaOH and HCl using                                                                                   |  |  |  |  |  |  |  |
| 1      | 0.05M Na <sub>2</sub> CO <sub>3</sub> solution                                                                                                               |  |  |  |  |  |  |  |
|        | 4. To determine the molarity, g/litre, and normality of each component in a mixture                                                                          |  |  |  |  |  |  |  |
|        | of H <sub>2</sub> C <sub>2</sub> O <sub>4</sub> .2H <sub>2</sub> O and H <sub>2</sub> SO <sub>4</sub> using 0.02 M KMnO <sub>4</sub> and 0.1 M NaOH solution |  |  |  |  |  |  |  |
|        | 5. To determine the normality, molarity and g/lit of KMnO4 and FeSO4.7H2O                                                                                    |  |  |  |  |  |  |  |
|        | solution using <b>0.1 N H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.2H<sub>2</sub>O</b> solution.                                                                |  |  |  |  |  |  |  |
|        | 6. To determine the normality, molarity and g/lit of FeSO4 (NH4)2SO4.6H2O and                                                                                |  |  |  |  |  |  |  |
|        | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solutions using <b>0.1</b> N KMnO <sub>4</sub> solution.                                                       |  |  |  |  |  |  |  |
|        | Electrophilic substitution reactions                                                                                                                         |  |  |  |  |  |  |  |
| 2      | Nitration, Sulphonation, Acylation, Alkylation, and Bromination etc. of organic                                                                              |  |  |  |  |  |  |  |
|        | compounds with recrystallization                                                                                                                             |  |  |  |  |  |  |  |
|        | Total Hours = 30                                                                                                                                             |  |  |  |  |  |  |  |

#### TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

#### **LEARNING OUTCOME**

- Expand the basic knowledge of electrophilic substitution in organic reactions
- To learn the basics of the analysis of water
- Acquire knowledge about basic principles of quantitative analysis

# ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

| Units |        | Lecture Duration<br>(In Hrs.) |        | ation of<br>edits<br>imbers) | Total<br>Lecture<br>Duration | Credit<br>Calculation |
|-------|--------|-------------------------------|--------|------------------------------|------------------------------|-----------------------|
|       | Theory | Practical                     | Theory | Practical                    | Theory+                      | Theory+               |

|          |    |    |   |   | Practical | Practical |
|----------|----|----|---|---|-----------|-----------|
| Unit – 1 | 15 |    |   |   |           |           |
| Unit – 2 | 15 | 30 | 3 | 1 | 45+30     | 4         |
| Unit – 3 | 15 |    |   |   |           |           |
| TOTAL    | 45 | 30 | 3 | 1 | 75        | 4         |

## **EVALUATION**

| Theory Marks | Practical Marks | Total Marks |
|--------------|-----------------|-------------|
| 75           | 25              | 100         |

# REFERENCE BOOKS

K.S. Tewari, N. K. Vishnoi, and S.N. A Textbook of Organic Chemistry 1 Mehrotra 2 **Organic Chemistry** Morrison Boyd 'Instrumental Method & Chemical Analysis 3 B.K. Sharma. Fundamental of analytical chemistry Skoog & West 4 5 Vogel's Qualitative Organic Analysis G. Svehla, B. Sivasankar **Practical Chemistry** Pandey, O. P., Bajpai, D. N., Giri, S. 6